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1 Introduction

Number theory questions can be special in the sense that you can often get a good idea of “why” a
problem must be true, and use this to point the way to a solution. Keeping this “why” in mind at all
stages can prevent you from going down a fruitless path. It is also important to use the “olympiad
metagame” by realizing that the given problem is solvable in a limited amount of time, so there
has to be a reasonable solution (something that is no longer true when it comes to research). For
certain problems, with this in mind, there is really only one viable possibility.

Rather than give an abstract list of possible “why’s”, let’s go over some examples. Take some
time to think about each problem, why it might be true, and how you may go about proving it.

2 Examples

Example 1 (APMO 1999 P4). Find all positive integers (a, b) such that a2 + 4b and b2 + 4a are
both perfect squares.

Example 2 (CMO 2003 P2). Call a positive integer n practical if every positive integer less than
or equal to n can be written as the sum of distinct divisors of n (for example, 6 is practical). Prove
that if x, y are practical, then so is xy.

Example 3 (CMO 2004 P3). Let p be an odd prime. Prove that

p−1∑
k=1

k2p−1 ≡ p(p+ 1)

2
(mod p2).

Example 4. Show that 1919 cannot be written as m4 + n3 for any pair of integers (m,n).

Example 5 (IMOSL 2005 N6). Let a, b be positive integers such that bn+n is a multiple of an+n
for all positive integers n. Prove that a = b.

Example 6 (IMO 1989 P5). Prove that for each positive integer k there exist k consecutive positive
integers none of which is an integral power of a prime number.
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3 Solutions

Example 1

Why. Since both a2 and a2 + 4b are squares, b has to be moderately large with respect to a. But
since b2 and b2 + 4a are also squares, the opposite is true too!

Solution. All that remains is to translate our “why” into formal statements. Since a2 + 4b > a2

and is equivalent to it modulo 2, we must have a2 + 4b ≥ (a+ 2)2 = a2 + 4a+ 4. Thus b ≥ a+ 1.
But by considering b2 + 4a, we similarly get a ≥ b+ 1, contradiction. Thus there are no solutions.

Example 2

Why. First, not every number is practical; for example odd numbers bigger than 1. In general, a
practical number will have to have certain small divisors, and will have a large number of divisors.
In that way, the problem statement seems believable.
So how can we prove it? The only viable way would be to express all n ≤ xy as the sum of divisors
of n.

Solution. Instead of trying to get n, let’s first try to get close. Assume that x ≥ y, and write
n = xq + r for some 0 ≤ r < x. Since n ≤ xy, we must have q ≤ y, whence q = d1 + · · · + di
for distinct divisors of y. But then we have xq = xd1 + xd2 + · · · + xdi, and xd1, . . . , xdi are
all distinct divisors of xy! This puts us close, we just need to make up the remainder r. But
r < x, so it’s expressible as r = e1 + · · ·+ ej , where e1, . . . , ej are distinct divisors of x. But then
ek ≤ r < x ≤ xdw for all k,w, so the entire set {e1, . . . , ej , xd1, . . . , xdi} is a set of distinct divisors
of xy which sum to xq + r = n, as desired. Thus xy is practical.

Example 3

Why. We can start with a sanity check: what about modulo p? Well, in that case k2p−2 ≡ 1
(mod p), so

p−1∑
k=1

k2p−1 ≡
p−1∑
k=1

k ≡ p2 + p

2
≡ 0 (mod p),

as expected. Looking modulo p2, we can’t repeat this since the order of a typical element is p2 − p,
much too different to 2p − 1. The only other reasonable thing would be to pair up terms in a
convenient way, so that things cancel out. If we could somehow turn the p2 into a p, then that
would also be great!

Solution. The most natural pairing is k with p−k. Indeed, in this case we use the binomial theorem
to get

k2p−1 + (p− k)2p−1 ≡ k2p−1 + (−k)2p−1 + (2p− 1)p(−k)2p−2 ≡ p(2p− 1)k2p−2 (mod p2).

Thus we can divide the whole thing through by p, and work modulo p instead! In particular, we
get

1

p

p−1∑
k=1

k2p−1 ≡
(p−1)/2∑
k=1

(2p− 1)k2p−2 ≡ 1− p
2
≡ 1 + p

2
(mod p),
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where we can now use the fact that k2p−2 ≡ 1 (mod p). Multiplying by p completes the solution!

Example 4

Why. There must be a sort of “barrier” preventing this number from being expressed, and the
most natural such barrier would be looking mod p. What are good choices for p? We would want
4, 3 | p− 1 to cut down on residues, so p ≡ 1 (mod 12).

Solution. Take p = 13, and note that the 4th powers modulo 13 are 0, 1, 3, 9, and the cubes modulo
13 are 0, 1, 5, 8, 12. Adding these together, we hit all residue classes modulo 13 except 7 (mod 13).
Conveniently, we also calculate that

1919 ≡ 619 ≡ 6 ∗ 369 ≡ 6 ∗ (−3)9 ≡ 6 ∗ (−27)3 ≡ −6 ≡ 7 (mod 13),

completing the proof.

Example 5

Why. For all primes p | an+n, we must have p | bn+n, which then implies that an ≡ bn (mod p).
Assuming p - a, b, this says that p | an + n implies that (b/a)n ≡ 1 (mod p). This would pigeonhole
n into certain equivalence classes modulo p− 1, but p | an + n should also incorporate information
about n (mod p). This should be enough to make a contradiction.

Solution. To simplify things, fix any prime p - a, b, and consider n ≡ 1 (mod p−1). Then an+n ≡
a + n (mod p), so let’s also take n ≡ −a (mod p). This is possible by the Chinese remainder
theorem. Now we have p | an + n | bn + n, whence 0 ≡ bn − an ≡ b− a (mod p), and so p | b− a.
But if b 6= a, then for large enough p this is a contradiction! Thus a = b.

Example 6

Why. The prime numbers are somewhat “sparse”, so their powers should be as well. There are
two viable approaches: one would be to construct k consecutive numbers with at least two prime
factors, and the other would be a more analytic approach, where we show the existence without a
construction.

Solution. Take 2k distinct primes p1, . . . , pk, q1, . . . , qk, and by CRT find an integer n with n ≡ −i
(mod piqi) for i = 1, 2, . . . , k. Then n+ 1, n+ 2, . . . , n+ k work.

Solution. There is a constant C such that π(n) := {primes <= n} ≤ C n
log(n) . The number of prime

power dth powers less than n is at most the number of dth powers less than n, which is at most
d
√
n. We only need to consider d ≤ logn

log 2 , as for larger d, xd ≥ 2d > n. In particular, the number of
prime powers at most n is at most

C
n

log(n)
+ 2
√
n+ 3
√
n+ · · ·+ blogn/ log 2c√n ≤ C n

log(n)
+ 2 log(n)

√
n ≤ C ′ n

log(n)
,

for some constant C ′. Take n large enough so that C′

log(n) <
1
k , and WLOG assume that k | n. Then

if every block {1, 2, . . . , k}, {k+ 1, k+ 2, . . . , 2k}, . . . , {n−k+ 1, n−k+ 2, . . . , n} contained a prime
power, then we would have at least n

k such prime powers, contradiction.

3 of 5



2019 Summer Camp Number theory: why things are true James Rickards

4 Problems

A-level problems should be short, but not necessarily easy. B and C level problems would be
olympiad style and IMO level, with C being generally harder than B. This ordering is somewhat
subjective, so don’t be surprised if you find some problems to be out of place.

A1 Let a, b, c, d be positive integers with ab = cd. Prove that a+ b+ c+ d is composite.

A2 If 5n and 2n both start with the same digit, what must that digit be? Can you find an
example of this as well?

A3 Prove that the sequence 1, 11, 111, . . . contains an infinite subsequence of relatively prime
numbers.

A4 Prove that a2 + b2 + c2 = 2012 has no solutions in positive integers.

A5 Let p be an odd prime. Prove that there exists an x such that x2 + 1 is not a square modulo
p.

A6 Let b, n > 1 be integers. Suppose that for each k > 1 there exists an integer ak such that
b− ank is divisible by k. Prove that b = An for some integer A.

B1 For x ∈ (0, 1) let y ∈ (0, 1) be the number whose n-th digit after the decimal point is the
2n-th digit after the decimal point of x. Show that if x is rational then so is y.

B2 Prove that for every positive integer n there exists an n-digit number divisible by 5n all of
whose digits are odd.

B3 Prove that for each n ≥ 2, there is a set S of n integers such that (a− b)2 divides ab for every
distinct a, b ∈ S.

B4 Prove that, if 1 + 2n + 4n is prime, then n = 3k for some integer k.

B5 b,m, n are natural numbers such that bn − 1 and bm − 1 have the same prime factors. Prove
that b− 1 is a power of 2.

B6 Let a, b be odd positive integers. Define the sequence (fn) by putting f1 = a, f2 = b, and by
letting fn for n ≥ 3 be the greatest odd divisor of fn−1 + fn−2. Show that fn is constant for
n sufficiently large and determine the eventual value as a function of a and b.

B7 Given an integer n ≥ 4. S = {1, 2, . . . , n}. A,B are two subsets of S such that for every pair
of (a, b), a ∈ A, b ∈ B, ab+ 1 is a perfect square. Prove that

min{|A|, |B|} ≤ log2 n.

B8 Find all natural numbers n greater than 2 such that there exist n natural numbers a1, a2, . . . , an
such that they are not all equal, and the sequence a1a2, a2a3, . . . , ana1 forms an arithmetic
progression with nonzero common difference.
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C1 Determine whether there exists an infinite sequence of nonzero digits a1, a2, a3, · · · and a
positive integer N such that for every integer k > N , the number akak−1 · · · a1 is a perfect
square.

C2 Find all positive integers n such that there exists a unique integer a such that 0 ≤ a < n!
with the following property:

n! | an + 1

C3 Given a positive integer k, prove that there exists a positive integer N depending only on k
such that for any integer n ≥ N ,

(
n
k

)
has at least k different prime divisors.

C4 Let n ≥ 50 be a natural number. Prove that n is expressible as sum of two natural numbers
n = x + y, so that for every prime number p such that p | x or p | y we have

√
n ≥ p. For

example for n = 94 we have x = 80, y = 14.

C5 Let k ∈ Z+ and set n = 2k + 1. Prove that n is a prime number if and only if the following
holds: there is a permutation a1, . . . , an−1 of the numbers 1, 2, . . . , n − 1 and a sequence of
integers g1, . . . , gn−1, such that n divides gaii − ai+1 for every i ∈ {1, 2, . . . , n− 1}, where we
set an = a1.

C6 For all positive integers n, show that there exists a positive integer m such that n divides
2m +m.

C7 For every positive integer n with prime factorization n =
∏k
i=1 p

αi
i , define

f(n) =
∑

i: pi>10100

αi.

That is, f(n) is the number of prime factors of n greater than 10100, counted with multiplicity.

Find all strictly increasing functions f : Z→ Z such that

f(f(a)− f(b)) ≤ f(a− b) for all integers a and b with a > b.

C8 Prove that for every prime p > 100 and every integer r, there exist two integers a and b such
that p divides a2 + b5 − r.
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